
101/2011 Pi
xIn

sig
ht

M
ag

az
in

e

01/2011

2 PixInsightMagazine

301/2011

P i x I n s i g h t M a g a z i n e I s s u e 0 1 F e b r u a r y 2 0 1 1

4 PixInsightMagazine

STAFF AND CONTRIBUTORS

Editor in Chief
Vicent Peris
Observatori Astronòmic de la Universitat de València

Editor Assistants
Carlos Milovic
Pontificia Universidad Católica de Chile
Niall Saunders
Clinterty Observatories, Aberdeen, Scotland

Design / Creative Directors
Juan Conejero
Pleiades Astrophoto S.L.
Vicent Peris
Observatori Astronòmic de la Universitat de València

Scientific Consultants
Fernando J. Ballesteros
Observatori Astronòmic de la Universitat de València
Joseph De Pasquale
Harvard-Smithsonian Center for Astrophysics
Chandra X-ray Observatory
Emilio J. García
Instituto de Astrofísica de Andalucía / CSIC
Robert Hurt
Jet Propulsion Laboratory / California Institute of Technology
Spitzer Space Telescope

Contributors
Jack Harvey / Steven Mazlin / Gerhard Bachmayer / Vicent Peris /
Juan Conejero / Carlos Milovic / Máximo Ruiz / Jordi Gallego /
Stephen Leshin / Stanislav Volskiy / Jon Talbot / Sergi Verdugo

Publisher
Pleiades Astrophoto S.L.
Apartado 204
46185 Pobla de Vallbona (Valencia)
Spain
www.pixinsight.com

ISSN: Pending

magazine.pixinsight.com
magazine@pixinsight.com

Copyright © 2011 Pleiades Astrophoto. All rights reserved.

PixInsight™, PixInsightMagazine™ and the PixInsight™ pixel logo
are trademarks of Pleiades Astrophoto S.L. All other trademarks are
the property of their respective owners.

Made on Linux® with PageStream™ 5.0 Pro desktop publishing software.
www.pagestream.org

Cover Image
NGC 2359 by Steven Mazlin and Jack Harvey at CTIO Observatory
(Chile). 16-inch f/11.3 Ritchey-Chrétien telescope and Apogee U9
camera. Total exposure time: 26 hours (RGB 2 hours per channel,
OIII 8 hours, Ha 12 hours)

501/2011

08
Editor’s Letter
Vicent Peris

10
Astrophotography with Wavelets (I)
Vicent Peris

26
Introduction to PixInsight Module Development
Juan Conejero

58
PixInsight as a Research Platform
Carlos Milovic

64
Community News

72
Image Gallery Pi
xIn

sig
ht

M
ag

az
in

e

6 PixInsightMagazine

701/2011

8 PixInsightMagazine

Pages 6 and 7
NGC 6960, NGC 6992, NGC 6995 and IC 1340 supernova remnant complex by Gerhard Bachmayer.
ASA 10N (10” f3.6) and FLI PL16803 camera. Total exposure time of 360 minutes (R, G, B, H-alpha and O-III filters).

901/2011

Here we start a new project, a new
challenge. This magazine is a
consequence of the creativity and

innovation that is happening today in the
dynamic and evolving community
generated around PixInsight. Day to day,
users and developers generate an
increasing amount of resources including
images, learning material, research works,
development projects and a variety of
technical documents. Therefore, all
PixInsight users need an appropriate
communication medium to share their
works and knowledge, and we hope
PixInsight Magazine will serve as a vehicle
for that goal.

This doesn't mean that we are limited to
the PixInsight community. With this
magazine we want to establish an
electronic publication open to the whole
astrophotography world, suitable to gather
multidisciplinary contributions from both
the amateur and professional astronomy
communities. For that purpose, PixInsight
Magazine's subject matter is broad by
design: astrophotography, image
processing —from practical processing
tutorials and examples to theoretical
works—, software development,
instrumentation, astronomy and
astrophysics, science outreach and related
disciplines. It is open to everybody, free
and publicly available, with a focus on
quality, modern design, innovation and
advanced contents.

Great projects always start from the need.
We feel that PixInsight users
—including ourselves— and the
astrophotography community need a
publishing line like the one of this
magazine. We hope you will find in
PixInsight Magazine a source to cultivate
and inspire your passion.

Vicent Peris, Editor in Chief

10 PixInsightMagazine

1101/2011

Vicent Peris

Astrophotography
with Wavelets (I)

This article series summarizes the work associated to
multiscale processing techniques that I have been developing
during the last decade. In this first installment I will give an
overview with examples of the techniques that will be covered
in coming articles.

My work is focused on solving practical problems with new
image processing algorithms and techniques. This connects
directly with two key goals of any astrophotography:
communicate the documentary value of the scene, and achieve
that on an aesthetic and perceptual basis.

12 PixInsightMagazine

Being a pianist, my research began from an aes-
thetic point of view. I started working with
multiscale techniques before knowing anything

about the multiscale concept. In 2003 I published an
article on the former Pleiades Astrophoto’s website,
entitled Masked Unsharp Mask (MUSM). This was the
first article I wrote on image processing, and the only
one using Adobe® Photoshop®. Not very known at that
time, through the years this article has had a large
influence on how we understand image processing in
astrophotography.

Most algorithms and techniques have their
downsides, so learning them means controlling how
they affect the image. As is well known, algorithms
working with convolutions tend to suffer from the
Gibbs effect, or ringing. Furthermore, if the algorithm
performs a local contrast enhancement, high-contrast
structures tend to saturate quickly. The «masked
unsharp mask» technique used a mask to filter out the
high-contrast, small-scale structures (such as the stars)
when applying an unsharp mask filter. MUSM used
what we know today as a «star mask» in order to
prevent the Gibbs effect and saturation to happen
around these structures.

The point of view of MUSM had nothing to do
with the classical star shaping methods. The true
revolutionary concept about MUSM was not in the
mask, but in the conceptual change about image pro-
cessing: structures with different properties require
different processing methods.

The Starting Point

Astrophotography with Wavelets (I)

1301/2011

Page 10: Small scale structures of an image of
Messier 51, isolated with the Local Contrast Normalization
Function. Note that the dark rings around high contrast
structures are complemented with the images of larger
structure components.

Left: The generation of a star mask in Adobe®
Photoshop® was carried out with what I called «differential
Gaussian blur». Two duplicates of an image were convolved
with Gaussian filters of different standard deviations. After
subtraction of the more defocused image from the other one,
the resulting image had only structures of a given size. This
way, stars could be easily selected to generate a star mask.
From top to bottom in this figure, first we have the original
image. Starting from this image we generate two more images
which are convolved with gaussian functions of different
standard deviation (in this case, 2 and 8 pixels). The result of
subtracting the more defocused image to the less defocused image
is shown at bottom.

Right: The inverted mask is used to protect the stars
from the USM filter. From top to bottom, first we have the
original image; the second image is the associated star mask.
The two lower images are comparison between the USM and
MUSM techniques. The MUSM technique allows to control
the Gibbs effect and the saturation of high brightness and
high contrast structures in the image — the usual case of the
stars in an astronomical image.

14 PixInsightMagazine

Large Scale Processing Techniques

From then on, my research continued with the
newly born PixInsight platform, because at that
moment, all members of the PixInsight develop-
ment team needed to go further than what
Photoshop® was allowing us. In my research
there have been two key moments. The first one
was with the new ATrousWaveletTransform tool
when I had the idea to raise the bias of the 128-
pixel scale to +0.2. Visually speaking, this simple
action made a change in the image that I had
never seen before, and focused my eye on
features that were barely visible before. Thus, my
first steps in multiscale processing were made
developing techniques to process large scale
structures. These techniques were focused on the
problem of reflection of small structures through
increasing scale wavelet layers, with the intention
of recovering low surface brightness structures.

In some scenarios, large-scale processing can
improve the image significantly. The typical case
is a dense star field where all the stars are hiding a
diffuse nebula. These techniques allow us to
separate the large-scale structures —the nebulae—
from the smaller ones —the stars and other small-
scale objects—. We will see in coming articles the
techniques that I developed to enhance the
separation of objects by their scales. These tech-
niques were the logical evolution of MUSM: we
don’t use masks to apply different processes to
different objects; we use masks to better separate
objects, and the result of this separation is two
different images which we process separately.

Film image of the Summer Triangle. The right
image shows the effect of increasing the bias of the
128 and 256-pixel scales by +0.25.

Astrophotography with Wavelets (I)

1501/2011

The second key moment in my research is
associated with the dynamic range problem. It
was at the time of making my first photo of the
Orion Nebula. My intention —even before begin
acquiring data— was to bypass the classical core-
masking techniques to compress the dynamic
range of the object. I started from a very specific
premise: to have the object as is. And then, work
on this basis to find a method to compress the
dynamic range of the image.

The main difference between analog and
digital photography is the linearity of data.
This means that the relative intensity between
two pixels is kept independently of their values.

This is extremely important to understand what
is documentary photography and, more specifi-
cally, astrophotography. The ability of the digital
camera to count the light gives us the oppor-
tunity to have the objects themselves, before
being translated into a visual image that our eyes
can read. This has become the keystone in my
work, because no adequate processing can be
done if we don’t start from an image that preser-
ves the original properties of the objects.

Starting from this point, I designed a high
dynamic range (HDR) composition algorithm to
build a linear HDR image. The algorithm, now
implemented in PixInsight (the HDRComposition
tool), works in a pyramidal way, in the sense that
saturated areas are replaced by linear data from
unsaturated, shorter exposures.

The output of this algorithm is the best
approximation to how the light of the
photographed objects would be detected having a
camera with a well depth large enough to capture
the full range of light intensities in the scene.
This is very useful in astrophotography, because
starting from the object as is allows us to apply
processing techniques specifically designed to
work with linear data: noise reduction, decon-
volution, color calibration, etc. In the example of
pages 18 and 19, we are simulating a camera with
an ADC of ~21 bits (a single image has 12 bit
depth) and a well depth 720 times higher than
the original sensor photosites.

The HDR linear image always needs to
be accommodated to the dynamic range of the
displaying media. I found the solution to this
problem again within the multiscale context,
working with the delinearized image. The core
of this solution is the Local Contrast
Normalization Function (LCNF). Contrarily to
classical band-pass filtering solutions, where
local contrast depends on pixel values from local
structures at larger scales, this function makes
these two factors independent each other. In
simpler words, local contrast doesn’t depend on
local illumination levels; therefore, the dynamic
range of an object can be compressed indepen-
dently of its size. //... Continued on page 20

Dynamic Range Compression

16 PixInsightMagazine

A good example of large-scale processing is this image of Barnard 145 from POSS II plates. The image at left is
the original one. From this image, we subtract the stars (at the center) to unveil the almost hidden nebulae. Actually,
we are not unveiling any new data, but making it visible to the eye because now it is not lost among the high contrast
stars that cover the whole field of view. The image without stars is then processed and merged with the original
image. The result, at right, is an image in which the low surface brightness nebulae have been greatly enhanced, but
having the original high-contrast structures relatively unmodified.

Astrophotography with Wavelets (I)

1701/2011 1701/2011

18 PixInsightMagazine

Dynamic Range Compression Techniques at a Glance

This page, bottom: The HDR composition
algorithm is used to compose an image in which the
subject has a larger brightness range than what the
camera is able to capture. The Orion Nebula is the
classical example, where extremely short exposures are
needed to acquire the data around the Trapezium. In
this case, exposures ranging from 2.5 seconds to half
an hour were needed to record the full brightness
interval of the objects in the scene.

This page, right: This simple graphic illustrates
how the HDR composition algorithm works.
Shorter exposures are superimposed over saturated
areas of the longer ones. It is important to bear in
mind that the result is a linear image. This allows us to
apply processing techniques designed to work with
linear data: deconvolution, color calibration or
gradient extraction, among others.

Facing page: After the HDR composition, a
histogram transformation allows us to see the darker
areas of the scene. The Local Contrast Normalization
Function is then used to compress the dynamic range
of the nonlinear data. The facing page shows how the
multiscale processing modifies the bright parts of the
nebula to reveal the hidden structures in the core.

Original data: Vicent Peris / José Luis Lamadrid.

18 PixInsightMagazine

Astrophotography with Wavelets (I)

2.5 sec

10 sec

2 min

10 min

30 min

 2.5 sec 10 sec 2 min 10 min 30 min

1901/2011 1901/2011

20 PixInsightMagazine

The Local Contrast Normalization Function is
not only the core of a dynamic range compres-
sion algorithm. It completes a multiscale-based
processing methodology, as a result of merging
this function with the large-scale processing
techniques.

This methodology has three main stages.
The first one is to divide the image into increas-
ing scale components with the contrast nor-
malization equation. After separation into scales,
we have several images, each one containing
different significant information of the image.
All of these images are processed separately
because structures with different properties
require different processing methods. Finally,
the processed images are recombined together
with the original image. This methodology is
briefly illustrated in the next pages with an
image of NGC 6914.

Towards a Multiscale Processing Methodology

Astrophotography with Wavelets (I)

Next Chapters

In the coming PixInsight Magazine issues we will
do an in-depth review of these techniques. We’ll
begin with large scale processing techniques. Of
great importance for this topic are the associated
masking techniques, which are essential to
process these structures correctly.

The articles will be illustrated with the
required practical examples for a better under-
standing, because each image requires a different
application of the techniques described. This
means that they must not be taken as a mere
collection of recipes. The goal of this article
series is to provide the reader with a set of fresh
ideas to find the appropriate methodology for
each one of his/her works.

2101/2011

In this example of NGC 6914, a multiscale
processing procedure has been applied to the right
image. Pay attention to the areas with low-contrast
detail. The processing recovered the detail inside the
reflection nebulae, specially in their brighter areas. The
dark structures around the bright star in NGC 6914b
are greatly enhanced; also the small Hα emitting
objects to the left of NGC 6914 are now much more
visible. At the same time, there is a contrast increase in
the Hα regions, where a lot of low-contrast structures
become visible. Another advantage of this methodology
is that we can manage color saturation much better,
without an excessive increase in chrominance noise,
because we work on the larger scale structures. Photo:
CAHA / Descubre / DSA / OAUV.

Vicent Peris works as an astrophotographer at
the Astronomical Observatory of the University
of Valencia, Spain. He is a founding member of
the Documentary School of Astrophotography
and an active PTeam member. Vicent has
contributed numerous algorithms and techniques
to PixInsight, including the remarkable
HDRWaveletTransform tool.

22 PixInsightMagazine

To perform the multiscale processing, the original image is divided in several images, each one containing
structures of a given structure size interval. Here we can see the generated images with small, mid an large structure
components. The scale separation has been made with the Local Contrast Normalization Function for the two left
images. To generate the image at right, we remove the first eight wavelet layers (up to 128-pixel scale).

2301/2011 2301/2011

24 PixInsightMagazine

Astrophotography with Wavelets (I)

Under this text we can see the first stage of the multiscale processing methodology. The original image
is divided into several images, each one containing structures of increasing sizes. The segmentation by structure sizes
is highly dependent on the original image and on the properties of the photographed objects.

Summary of the Multiscale Processing Methodology

2501/2011

After scale division, we process all the images separately. Usually small scales are used to sharpen the image,
and images containing larger scale structures are used to increase color saturation. Finally, the three scale-component
images are mixed with the original image to create the final result. The original image is used in this combination as an
equilibrium reference.

26 PixInsightMagazine

2701/2011

If you are a C++ developer willing to create
your first PixInsight tools, then this article
will help you start working in the right

direction, providing you with the basic elements
necessary to design and write your first modules
correctly and efficiently. If you are a more
experienced PixInsight/PCL developer, this
article may also be of your interest as it provides
a well-organized description of basic module
development techniques and some key elements
of PixInsight's architecture, difficult to find
elsewhere. Finally, if you are a non-developer
user, you may find this article also interesting to
learn more about PixInsight, its architecture and
some of its key design principles, which will
provide you with a more complete perspective
to understand and apply the different tools and
resources available.

PixInsight Modules and PCL
PixInsight modules are shared objects —also
known as shared libraries or dynamic load
libraries on some platforms— that can be in-
stalled to add functionality to the PixInsight Core
application, hereafter referred to as just «the
core» for simplicity. You have a graphical
description of PixInsight's modular architecture
on Figure 1. As you can see in this figure, the
core and all PixInsight modules communicate
and work together following a client-server
model. Communication between a module and
the core is bidirectional: a module can make
requests to the core and receive answers, or pass
data to the core and retrieve data from the core.
In all cases, valid communication must follow a
set of strictly defined protocols and procedures,

PixInsight is both an image processing application and a development platform.
PixInsight provides two different development frameworks: the PixInsight Class Library
(PCL) and the PixInsight JavaScript Runtime (PJSR). PCL is a high-level C++ frame-
work for development of PixInsight modules, while PJSR is an ECMA-262-3 compliant
scripting environment embedded in the PixInsight Core application. This article is a
general introduction to module development with PCL.

Introduction to
PixInsight Module Development
Juan Conejero

28 PixInsightMagazine

Figure 1— The modular architecture of PixInsight.

and use a set of predefined data types and data
structures. These protocols, procedures, types
and structures have been formally defined as a
specific application programming interface (API).
PixInsight's internal module communication API
is a relatively complex set of functions and data
structures defined in the C language that we
collectively call the low-level API. As of writing
this document, the low-level API has not been
published; it is a closed-source, publicly undocu-
mented part of PixInsight only known to the core
development team, and there are no current
plans to change its status. The client-side part of
the low-level API is internal to PCL, and the
server-side part is obviously internal to the core.

While modules and the core communicate
using the low-level API behind the scenes, this is
by no means how PixInsight modules are
designed and developed. We have taken one step
further with a dedicated framework written in
the C++ language that provides a much higher
level of abstraction. This high-level C++ frame-
work has been implemented as the PixInsight
Class Library, or PCL for short, and is publicly
available for download at:
http://pixinsight.com/developer/pcl/download/

PCL has also a quite complete reference
documentation in HTML format, which is included
in all PCL distributions and is also available online at:
http://pixinsight.com/developer/pcl/doc/html/

Along with a core-module communication
layer and a number of support classes (for ex-
ample, platform-independent file access, container
classes, thread support, etc.), PCL provides many
ready-to-use implementations of image processing
algorithms, including geometric transformations,
intensity transformations (histograms, interpolated
curves, color saturation, etc.), color management,
colorimetrically defined RGB working spaces,
morphological transformations, convolutions,
pixel interpolations, fast Fourier transforms and
wavelet transforms, among others. Most of these
algorithms are provided as parallel multithreaded
implementations. PCL is cross-platform: it is
available on all platforms where PixInsight has
been ported. Currently this includes FreeBSD,
Linux, Mac OS X and Windows. Provided that
reasonably good programming practices are
observed, a module written around PCL is
guaranteed to work on all supported platforms
without changing a single line of source code.

Introduction to PixInsight Module Development

2901/2011

PCL is completely free and royalty-free. It is
released under a liberal software license, similar
to the BSD license, that imposes no restrictions
on distribution and availability of source code:
PixInsight modules developed with PCL can be
distributed as open-source or closed-source,
freeware or commercial products. The PCL
license has been included in the headers of all
PCL source code files and can also be down-
loaded as a plain text file at:
http://pixinsight.com/developer/pcl/
pcl-license-1.0.txt.

A module can implement basically two
types of objects to add functionality to the
PixInsight platform: processes and formats. A
process can be thought of as a tool that usually —but
not necessarily— provides some kind of interac-
tion with the user. The actual functionality, roles
and features of a PixInsight process, however, go
far beyond what the typical tool or plug-in can
do in most applications. Most PixInsight proces-
ses can modify images in some way, but they can
also be global processes that don't work in the
context of any particular image, dynamic processes
that provide a higher level of interaction through
the graphical interface, or inspectors and observers
that gather information on images, on other
running processes, on system objects, etc. A
format implements an image format, which
usually —although not necessarily— corresponds
to a file format such as JPEG, TIFF, FITS, etc.
There's nothing in the PixInsight/PCL ar-
chitecture against a single module providing
both processes and formats, although this is
nonstandard practice and is not recommended
for the sake of modularity, which is one of the
main design principles of PixInsight. So we
usually talk about process modules and format
modules because their functionality is well
defined and differenced.

Figure 1 also depicts the way some
objects can be shared between modules and the
core. Objects such as images, image views and
windows, elements of the graphical user inter-
face (windows, dialogs and controls such as
buttons, check boxes, etc.), process instances
(which are concrete representations of proces-
ses) and many more, can be managed, created
and manipulated from a module. This object
sharing mechanism plays a key role in the
PixInsight platform and has been implemented

through managed aliases in PCL. A managed
alias is an abstraction of an actual object living
in the core, that a module can see and manipu-
late as a high-level replica of the original.

This is just a general description; more
complete and accurate information must be
provided by means of practical examples to be
useful, and this is what we'll do in successive
articles on PixInsight development topics. So let's
start by telling you how to set up your PCL
development environment and how to write a
simple module, to teach you the basics that you
need to become a proficient PixInsight/PCL
developer.

PCL Working Environment
The first thing you have to do is pretty obvious:
download and install PCL. As we have said
before, the PCL distribution is available for
download from PixInsight's website:
http://pixinsight.com/developer/pcl/download/

Always keep your local PCL installation
up-to-date with the latest version available. PCL
is distributed as a unique archive that provides all
necessary libraries and source code files for
PixInsight/PCL module development on all
supported platforms. Currently it is a standard
gzip-compressed tar archive (tar.gz). Uncom-
pressing and extracting tar.gz files are trivial
operations on UNIX (FreeBSD and Mac OS X)
and GNU/Linux platforms, but require a specific
tool on Windows. For developers working on
Windows platforms we recommend the excellent
7-Zip free utility, available at:
http://www.7-zip.org/.

Installing PCL is as simple as extracting
the tar.gz archive on any directory where you
have full read and write rights; typically on a
directory under your home directory. You'll need
also a working PixInsight Core application,
which requires a valid software license. Both
commercial and free trial licenses can be used for
development.

PCL Distribution
Let's take a look at the PCL distribution's
directory tree, which you can see on Figure 2.
The following list describes the contents and
purpose of each PCL distribution directory. We

30 PixInsightMagazine

assume that the PCL distribution package has
been installed on a <PCL> directory of your local
filesystem; for example:

UNIX and Linux: <PCL> = $HOME/PCL
Windows: <PCL> = C:\PCL

<PCL>/bin
Binary files. This subdirectory includes —or may
include, after the corresponding compilation and
building procedures— a number of utility pro-
grams, mainly for management of PCL source
code and module projects. As it is distributed, this
directory is initially empty.

<PCL>/doc/pcl
PCL Documentation files. Launch the file
<PCL>/doc/pcl/index.html to browse the PCL
Reference Documentation in HTML format. This
documentation has been generated with the
Doxygen tool from standard PCL header files.

<PCL>/include/pcl
Standard PCL C++ header files.

<PCL>/lib/freebsd
<PCL>/lib/linux
<PCL>/lib/macosx
<PCL>/lib/windows
PCL static libraries for all supported platforms
and architectures. Currently PCL libraries are
provided for the following compilers:

FreeBSD and Linux:
GCC C++ compiler version 4.4 and higher.

Mac OS X:
GCC C++ compiler version 4.2 and higher.

Windows:
Microsoft Visual C++ 2008.

<PCL>/src/modules/file-formats
A selection of PixInsight format modules, with
complete source code.

<PCL>/src/modules/processes
A selection of PixInsight process modules, with
complete source code. The source code is ready for
compilation and forms an excellent set of develop-
ment documentation and reference material.

Introduction to PixInsight Module Development

Figure 2— The PCL distribution tree.

3101/2011

Environment Variables
Once you have installed PCL, you must define a
number of environment variables. These variables
are necessary for the build system to locate the
necessary library, source code and header files, as
well as to generate the output modules (shared
objects) in the correct place. All the required
variables are described in the following list.

PCLDIR
PCL root directory. The value of this environ-
ment variable must be the full directory path
where the PCL distribution has been installed on
your computer. On FreeBSD, Linux and Mac OS
X, this variable should normally be, assuming that
you have installed PCL on a 'PCL' subdirectory
of your home directory:

$HOME/PCL

and on Windows, something like:
C:\Users\<your-user-name>\PCL

or something perhaps more practical such as:
C:\PCL

PCLBINDIR32
Optional on 64-bit platforms. Binary files subdirectory
within the PCL directory tree, for output 32-bit
executables and shared objects. On 32-bit platforms
this variable is usually equal to $PCLDIR/bin. On
64-bit platforms, this variable is only necessary to
carry out cross-platform 32-bit builds.

PCLBINDIR64
64-bit platforms only. Binary files subdirectory within
the PCL directory tree, for output 64-bit ex-
ecutables and shared objects. On 64-bit platforms
this variable is usually equal to $PCLDIR/bin. On
32-bit platforms this variable should not be defined,
since 64-bit cross-platform builds are usually not
possible on 32-bit operating systems.

PCLBINDIR
PCL binaries directory. This variable should be
equal to either PCLBINDIR32 or PCLBINDIR64,
respectively for 32-bit and 64-bit platforms. This
variable points to the directory where output
binaries must be generated for the host machine’s
native architecture.

PCLLIBDIR32
Optional on 64-bit platforms. 32-bit libraries subdirec-
tory within the PCL directory tree. This variable

should be equal to $PCLDIR/lib/<platform>/x86
on each platform. On 64-bit platforms, this
variable is only necessary to carry out cross-
platform 32-bit builds.

PCLLIBDIR64
64-bit platforms only. 64-bit libraries subdirectory
within the PCL directory tree. This variable should
be equal to $PCLDIR/lib/<platform>/x86_64 on
each platform. On 32-bit platforms this variable
should not be defined, since 64-bit cross-platform
builds are usually not possible under 32-bit operat-
ing systems.

PCLLIBDIR
PCL library files directory. This variable should be
equal to either PCLLIBDIR32 or PCLLIBDIR64,
respectively for 32-bit and 64-bit platforms. This
variable points to the directory where static PCL
libraries are available for the host machine’s native
architecture.

PCLINCDIR
PCL include files directory. Should be equal to
$PCLDIR/include.

PCLSRCDIR
PCL source files directory. Should be equal to
$PCLDIR/src.

Defining these environment variables requires
different steps on each supported platform. On
Windows you can define them with specific
options available through the system's Control
Panel application. For example, on Windows 7
and Windows Vista the following sequence will
allow you to edit, add and remove environment
variables: Start > Control Panel > System >
Advanced System Settings > System Properties >
Advanced > Environment Variables.

On Mac OS X you must create a property
list file with the variable definitions. The path to
this file must be ~/.MacOSX/environment.plist.
You'll find more information on the following
section of Apple's Mac OS X Reference Library:
http://developer.apple.com/library/mac/
#documentation/MacOSX/Conceptual/
BPRuntimeConfig/Articles/EnvironmentVars.html#//
apple_ref/doc/uid/20002093-113982

On FreeBSD and Linux, you simply have
to add the necessary variable declarations to your
shell configuration file: .bash_profile, .tcsh_profile, or

32 PixInsightMagazine

Introduction to PixInsight Module Development

the appropriate file for your shell. Figure 3 shows
an example .bash_profile file for a 64-bit Linux
system. Note that the configuration file shown in
Figure 3 is just an example; you may need dif-
ferent declarations adapted to your particular
working environment. In the example, the user
has installed the PCL distribution on the
$HOME/PCL directory and both 32-bit and 64-bit
versions of the PixInsight Core application on the
$PIDIR32 and $PIDIR64 directories, respec-
tively. The PCLBINDIR32 and PCLBINDIR64
variables have been configured to generate
module binaries (.so shared object files) directly
on the bin distribution directory of each installed
PixInsight Core application. The rest of PCL
variables have been defined to point to the
corresponding subdirectories within the PCL
distribution tree.

Figure 3— A .bash_profile configuration
file for a 64-bit Linux PCL development
environment.

Get the default aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

PixInsight installation directories
export PIDIR32=$HOME/PixInsight/x86
export PIDIR64=$HOME/PixInsight/x86_64
export PIDIR=$PIDIR64

PCL environment variables
export PCLDIR=$HOME/PCL
export PCLBINDIR32=$PIDIR32/bin
export PCLBINDIR64=$PIDIR64/bin
export PCLBINDIR=$PCLBINDIR64
export PCLLIBDIR32=$PCLDIR/lib/linux/x86
export PCLLIBDIR64=$PCLDIR/lib/linux/x86_64
export PCLLIBDIR=$PCLLIBDIR64
export PCLINCDIR=$PCLDIR/include
export PCLSRCDIR=$PCLDIR/src

export PATH=$PATH:$PCLBINDIR

Listing 1 — SandboxModule.h

3301/2011

Figure 4— The Sandbox module in the PCL
distribution tree.

The Sandbox Module
No article related to practical computer pro-
gramming topics should be without abundant
source code examples, and this one won't be an
exception. The Sandbox module has been in-
cluded in all PixInsight Core and PCL dis-
tributions to ease creation of new process
modules, especially for newcomer developers. It
is a simple module that doesn't do anything
useful, except providing a skeleton that can be
used as the basis for a real project. We'll continue
most of this article working with Sandbox as an
idoneous tool to teach you the structure and
functionality of a PixInsight process module.
We'll leave the particularities of format modules
for a future article.

In the PCL distribution, Sandbox can be
found on src/modules/processes/Sandbox under the
PCL root installation directory. Let's take a look
at Sandbox's source files on Figure 4. As you can
see, there are five groups of two files each with the
following suffixes: Instance, Interface, Module,
Parameters and Process, each group consisting of
a .h file (for declarations) and a .cpp file (for defi-
nitions and implementations). This is the typical
distribution of source code files in a process
module. There's no rule against implementing a
module in a different way, but this is the cus-
tomary distribution that we recommend because it
clearly identifies the different functional blocks, as
we'll describe in the following sections.

Module Definition
A PixInsight module is a collection of components
organized as a hierarchical tree structure, whose
root element is a unique instance of a class derived
from MetaModule. Such unique instance is man-
datory in every PixInsight module, and is always
defined as the Module global variable automatically
by the PCL. The MetaModule class, besides acting
as the root of the module's hierarchical structure,
provides a formal description of the module,
including some basic properties such as the
module’s name, version, copyright information,
release date, etc. MetaModule and its unique
instance Module are declared in the standard
pcl/MetaModule.h header.

The SandboxModule.h file declares the
SandboxModule class, which is a derived class of
MetaModule. You can see the source code of this

34 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 2 — SandboxModule.cpp (1/2)

3501/2011

file in Listing 1, and the corresponding definitions in SandboxModule.cpp,
which we have included as Listing 2. All member functions of SandboxModule
are pretty straightforward; most of them are optional since MetaModule
provides default implementations, and all of them are virtual member
functions. For the sake of coherence with standard modules, however, all of
these member functions should always be reimplemented —failure to do so is
considered bad programming practice. You can consider SandboxModule as a
reference for defining and implementing a PCL module class.

The Module Installation Routine
An item that deserves a detailed explanation is the module installation routine,
namely InstallPixInsightModule(). You can see this function imple-
mented in SandboxModule.cpp, on Listing 2, line 89. This function is man-
datory in every PixInsight module and has the following prototype:

PCL_MODULE_EXPORT int InstallPixInsightModule(int mode);

Listing 2 — SandboxModule.cpp (2/2)

36 PixInsightMagazine

The PCL_MODULE_EXPORT macro is defined in the
pcl/Defs.h standard header, which is automati-
cally included by all PCL headers, and must be
specified as a modifier to this function, just as
shown in the prototype above. This macro
provides the necessary declarations and compiler
directives to export a function in a platform and
compiler-independent way.

InstallPixInsightModule() will be
called by the core when the module is being
installed, either as a result of a specific user request,
or as part of the module installation procedure that
takes place upon application startup. The mode
argument can be one of the following:

InstallMode::FullInstall
The module is being installed normally. In this
mode all required objects for normal module
operation should be initialized. In Listing 2, lines
93-97, note that the SandboxProcess and
SandboxInterface instances are being in-
itialized when this installation mode is passed to
the module installation routine.

InstallMode::QueryModuleInfo
The module is being installed exclusively to retrieve
module metadata. Besides an object inheriting from
MetaModule and providing reimplementations of
virtual member functions such as Version(),
Name(), ReleaseDate() and so on, no additional
objects such as processes, interfaces or formats need to
be initialized in this installation mode.

InstallMode::VerifyModule
The module is being installed exclusively for
validation and integrity verification. The same
remarks and conditions that we have specified for
InstallMode::QueryModuleInfo also apply to
this installation mode.

The InstallPixInsightModule function must
be defined in the global namespace —a common
error is defining it in the pcl namespace; in such
case it won't be exported with the correct signature
and the core won't find it. This function should
return zero to signal successful module installation;
any other value will be interpreted as denoting
installation failure. Note that this function, as
happens with all PCL callbacks, can freely throw
exceptions. All exceptions thrown will be catched
by internal PCL routines and will lead to a nonzero
return value (and hence the module won't install).

Module Version and Release Date
In SandboxModule.cpp, on Listing 2 line 22, you
can see another important member function that
we’ll describe a little further, namely
SandboxModule::Version(), which is a reim-
plementation of MetaModule::Version(). This
virtual member function returns the address of a
static character string that must specify the
module version in a specific format that is
thoroughly described with comments in the
standard pcl/Module.h header. If the module
version is not defined with the correct format, the
core won’t recognize the module shared object as
a valid PixInsight module. This is part of a security
mechanism to prevent problems caused by loading
wrong shared objects from the core. To facilitate
defining valid module version strings, PCL
provides the PCL_MODULE_VERSION macro,
defined in pcl/Module.h. The use of
MODULE_VERSION_ macro definitions (Listing 2,
lines 1 to 5) isn’t standard or strictly required, but
it is customary for PCL development, and these
macros are required by some PCL code mainte-
nance utilities. The same is true for
MODULE_RELEASE_ macros to define module
release dates. For compatibility with PCL code
maintenance utilities, always use these macros in
your modules, just as you have them included in
SandboxModule.cpp (Listing 2).

Process Definition
The files SandboxProcess.h (on Listing 3) and
SandboxProcess.cpp (on Listing 4) declare and
define, respectively, the SandboxProcess class.
This is a derived class of MetaProcess, which is
the PCL class that must be used to implement the
basic properties and functionality of all PixInsight
processes. As happens with MetaModule, a number
of virtual member functions of MetaProcess must
be reimplemented by derived classes, while other
non-critical members provide default implemen-
tations. Let’s review some of these members.

Process Identifier
One of those critical member functions is
MetaProcess::Id() (on Listing 3, line 15, and
Listing 4, line 29). This member function returns
the identifier of the process as an IsoString
object. Every process must have a unique identifier,
that is, two or more installed processes cannot have
the same identifier. In PixInsight, process iden-

Introduction to PixInsight Module Development

3701/2011

tifiers —all identifiers, actually— are case-sensitive
(fooProcess is different from FooProcess), must be
valid C identi耀àers (a123 and x_yz are valid but
1a23 and ‘x yz’ are not), and it is customary to
form all process identi耀àers as concatenations of
capitalized words, such as UnsharpMask or
HDRWaveletTransform for example. In our
example we are defining a process whose identifier
is ‘Sandbox’, as you can see on line 31 of Listing 4.

Process Category
MetaProcess::Category() is another virtual
member function that should be reimplemented by
all process classes. The default implementation in
MetaProcess returns an empty string, which is
the same as not specifying any category. The set of
installed processes forms a categorized tree in

PixInsight. The core gathers all processes that
don’t specify a category in a default Etc group.
Unless a process has a strong reason to exclude
itself from the category tree, it should return a
nonempty string from this member function. If
the returned category already exists —because
another process already speci耀àed it when its
module was installed—, then the process will be
added to the existing category. If the name of a
nonexisting category is returned, a new category
with that name is created and the process becomes
its only member. Note that it is legal to return two
or more different categories, separated by com-
mas, from this function. For example, the standard
StarAlignment process returns the string
“ImageRegistration, Preprocessing” to
inform that it belongs to those two categories.

Listing 3 — SandboxProcess.h

38 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 4 — SandboxProcess.cpp (1/3)

3901/2011

Listing 4 — SandboxProcess.cpp (2/3)

40 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 4 — SandboxProcess.cpp (3/3)

4101/2011

Process Instantiation
Unless you are writing an inspector or an obser-
ver tool, your process must be able to generate
process instances. A process class, which we define
as a derived class of MetaProcess, is a descrip-
tion of a process in abstract terms. A process
instance is a concrete realization of a process
class. For example, the standard Statistics
process is an observer in PixInsight. Statistics
cannot generate instances because they wouldn’t
make any sense; after all, Statistics does
nothing at all that could belong to a processing
history because it cannot be executed. The standard
CurvesTransformation process, on the other
hand, is an instance generator. An instance of
CurvesTransformation can be executed on an
image to apply a pixel intensity transformation.

An instantiable process must return newly
created instances from a reimplementation of
MetaProcess::Create(). Similarly, a new
instance must also be returned from a
reimplementation of MetaProcess::Clone(),
constructed as a duplicate (a clone) of an existing
instance. Note that both are pure virtual member
functions, so they must be reimplemented as non-
pure by all derived classes of MetaProcess. A
process instance is an instance of a derived class of
the ProcessImplementation PCL class. We’ll
study this class later, when we review the
SandboxInstance class.

The Sandbox process is instantiable,
mainly because in this way we are helping you in
starting your own processes, which almost always
will be instantiable processes —observers are nice,
but most of the time you’ll want to deal with
executable image processing tasks in PixInsight.
You can see how SandboxProcess declares its
instance generation member functions in Listing
3, line numbers 24 and 25, respectively. The
definitions of these functions can be seen on
Listing 4, lines 59 and 64, respectively. What
would these functions look like for an observer
tool? Easy: both functions would just return zero.
In this way the core knows that no instance can be
generated, and the observer behaves as such.

In SandboxProcess::Clone(), note that
we are using dynamic_cast to ensure that we are
going to clone an instance of our process, that is,
SandboxInstance. When the core invokes the
Clone member function, there’s no guarantee that
the source instance (the p argument in Listing 4

line 64) is of the same class as the process being
invoked —note that p is a reference to an instance
of the generic ProcessImplementation class, so
it can be a reference to any process instance—;
dynamic_cast allows removing that uncertainty.

Command-Line Execution Routine
PixInsight provides three different user interfaces
in the PixInsight Core application: a graphical user
interface, a scripting interface —the JavaScript
runtime—, and a command-line interface available
from the Processing Console window. Along with
a large set of internal commands, PixInsight’s
command-line interface allows running any
installed process. By default, any installed process
can be launched by just entering its identifier as a
command; you don’t need to do anything special to
get this functionality. However, a process can
implement its own command-line execution
routine to customize its behavior on the command-
line and to provide its own command-line ar-
guments. That’s what we have done with
SandboxProcess, again to guide and help you.
Implementing a custom command-line routine is
always a good idea for most processes, as this
improves their behavior and extends their scripting
functionality.

To implement a custom command-line
execution routine, a process must inform the core
that it is able to manage command-line in-
vocations; otherwise the custom routine will never
be called. This must be done by returning true
from a reimplementation of MetaProcess::
CanProcessCommandLines(). You can see how
SandboxProcess has reimplemented this func-
tion in Listing 4, line 70.

A process’ command-line execution routine
in PCL looks and behaves much like the main
function of a command-line application. It
receives a list of command-line arguments in a
way very similar to the standard argv argument
of main, but instead of an array of char pointers,
it is a constant reference to StringList. A
StringList object is a dynamic array of String
objects (UTF-16 Unicode character strings),
implemented as the Array<String> template
instantiation in PCL. As happens with all PCL
containers, StringList elements can be
traversed with mutable iterators and constant
iterators in the usual way, and also using integer
array subscripts. As is customary in the UNIX

42 PixInsightMagazine

world, a PCL command-line routine must accept
the standard --help argument to provide some
help about its usage, valid syntax and supported
arguments. The ShowHelp() routine (Listing 4
line 75) provides a good starting point to write a
process command-line help. Naturally, all
console output must be done by calling
Console::Write() and similar functions. You
may want to read the documentation for the
pcl::Console class at this point. The
ShowHelp() routine in SandboxProcess.cpp can
be considered as a prototype to be followed in all
implementations.

On Listing 4 line 103 you can see how a
command-line routine looks like for a typical
process. The ExtractArguments function (line
105) performs the argument parsing task effi-
ciently, which saves you a lot of work. There’s
much more to say about command-line routines.
To learn more you should consult the Argument
parsing routines and utilities section of the PCL
Reference Documentation, along with the
documentation for the pcl::Argument class.

Default Interface
Along with command-line functionality, processes
usually have one or more associated graphical
interfaces. The term default interface refers to the
process interface that the core will use to launch a
process. For example, A process is launched when
the user makes double click on a process icon, or
when the user activates a process item on the
Process Explorer window.

To specify a default interface, a process
must reimplement the MetaProcess::
DefaultInterface virtual member function to
return the address of an object inheriting from the
ProcessInterface class. A derived class of
ProcessInterface represents a specialized top-
level window that provides a graphical user inter-
face for a particular process. A ProcessInterface
descendant class typically implements a set of
controls that can be used to edit process parame-
ters, such as edit fields, sliders, check boxes, etc.
The subject of process interfaces is complex and
cannot be covered in this introductory work.

Process Icon
Every process has an associated icon in
PixInsight. Icons are important graphical
elements because they allow identifying the

different processes and their instances in a variety
of contexts within the core application. We expect
that PixInsight/PCL developers will invest some
time and care in designing and creating nice icons
for their new tools. A good icon must be both
graphically appealing and informative about the
process task. A process icon can be specified in
several ways. One obvious way is by reimplement-
ing the MetaProcess::IconImageFile virtual
member function. This function returns the
absolute file path of an image file for the icon.
Supported formats include PNG, XPM, JPEG,
BMP and TIFF at least. However, using this
function is discouraged, mainly because it
generates an unnecessary dependency on an
external resource, and also because providing a
file path can be quite error-prone. The preferred
way to specify a process icon is with a reimple-
mentation of MetaProcess::IconImageXPM().
This member function returns the address of an
image stored in the standard X Pixmap format
(XPM) as a static array of char*. The XPM
format is very nice for us developers because it
allows us to encode image resources as static data
blocks integrated with C/C++ source code:
http://en.wikipedia.org/wiki/X_PixMap
You can use a variety of image editing ap-
plications, including PixInsight, to create XPM
files from PNG or TIFF images.

On Listing 3 line 20 you can see how
SandboxProcess declares its IconImageXPM()
reimplementation. On Listing 4 line 14, note the
#include directive that should be uncommented
when the SandboxIcon.xpm file is available.
Similarly, SandboxProcess::IconImageXPM()
on line 51 should return the address of the XPM
structure (SandboxIcon_XPM in the code), when
available.

Process icons must be 24x24 pixels, 32-bit
ARGB images. If other dimensions are used, the
core automatically resizes the icon, which may lead
to suboptimal results. If a process doesn’t specify
an icon —as usually happens during initial devel-
opment stages— the core automatically assigns a
default icon (a gear icon in current core versions).

Instance Definition
The files SandboxInstance.h and Sandbox-
Instance.cpp, in Listing 5 and Listing 6, respec-
tively, implement the instance class of our pro-
cess: SandboxInstance. This is a derived class of

Introduction to PixInsight Module Development

4301/2011

ProcessImplementation, which as we have
seen earlier, is the class that represents a process
instance in PCL. Recall that process instances are
responsible for actual processing in PixInsight: a
process is just an abstract definition, while a
process instance is an actual object that can be
executed to work directly with image data, among
many other things.

The first thing we have to focus our atten-
tion on is SandboxInstance’s constructors. This
class declares two constructors on lines 14 and 15
of SandboxInstance.h (Listing 5), respectively.

Note that none of these constructors will be
invoked directly by the core; instances will always
be created by the process class (SandboxProcess
in this case) in response to direct core requests, and
those requests will always be translated into calls to
reimplementations of MetaProcess::Create()
and MetaProcess::Clone() —at this point you
may want to recall these reimplementations from
Listing 4, lines 59 and 64.

Despite the fact that it isn’t strictly a
default constructor per C++ syntax rules, the first
constructor (Listing 5, line 14) is a default instance

Listing 5 — SandboxInstance.h

44 PixInsightMagazine

constructor in PCL. It takes a single argument of
type MetaProcess*. Note that this is the con-
structor called by the process class from its
MetaProcess::Create() reimplementation.
This constructor should provide a default in-
itialization for a newly created instance; you have
a typical example in Listing 6, line 11.

The second constructor is the equivalent to
a C++ copy constructor for a PCL process in-
stance: we call it a clone instance constructor. This
constructor will be called by the process class from
its reimplementation of MetaProcess::Clone().
Note that this constructor takes a single argument
of type ProcessImplementation*. This con-
structor should initialize a newly created instance
as a duplicate of an existing instance of the same
class. Note that the implementation of this func-
tion in SandboxInstance (Listing 6 line 21)
simply calls the Assign member function, which
performs all the required data member assign-
ments. This behavior is typical and highly cus-
tomary in most PCL modules.

Process Parameters
We have reached a point where we must widen
our field of view to understand how a process is
formally connected to the core and to the rest of
the PixInsight platform. This includes standard
object-oriented functionality in PixInsight, such
as automatic process scripting and serialization,
abstract interprocess communication and encap-
sulation of process instances, which fall outside
the scope of this introductory article.

From an object-oriented point of view, a
process instance is characterized by three main
elements: (1) a process class, (2) instance methods,
and (3) instance properties. We already know how
to define a process class in PCL by subclassing
MetaProcess. Instance methods are relatively
straightforward: they are just virtual member
functions of ProcessImplementation, which
must be reimplemented by a derived class; we’ll
see some of those relevant functions later. Let’s
concentrate on properties now.

At the PCL level, instance properties are
just data members (of a derived class of Process-
Implementation) known to the core. The core
knows the data type and the length and/or the size
in bytes occupied by each instance property, as
appropriate, and also knows how to read and write
them through specialized methods. This allows for
very powerful features such as automatic scripting

and serialization of process instances. For example,
as soon as you install a module that defines a new
process, it can be instantiated from JavaScript code
automatically (and in the future, also from other
scripting languages, such as Python). Neither the
user nor the developer need to do anything special
to support this feature. Similarly, all process
instances can be serialized in XPSM format (XML
Process Set Module format) or as binary PSM files
in a completely automatic and transparent way;
again, besides designing and implementing your
module correctly, you don’t need to do anything
special for this to be possible.

In all of these advanced PixInsight features,
process parameters play a key role. A process
parameter is a high-level object that provides a
complete description of an instance property in
abstract terms. Process parameters are imple-
mented as derived classes of MetaParameter.
More precisely, MetaParameter is the root of a
subtree of PCL classes that implement process
parameters of all supported data types. All of
these classes are declared in the standard
pcl/MetaParameter.h header.

Metaparameter Classes
As happens with all objects in PixInsight, a process
parameter has a unique identifier, similar to
module and process identifiers. The scope of a
parameter is its parent process, so a parameter
identifier must be unique within its parent process,
but other parameters may have the same identifier
if they are children of other processes. Re-
implementations of the MetaParameter::Id pure
virtual function return parameter identifiers as
IsoString objects. There are other member
functions of MetaParameter that you should know,
but this is about all you need to start working. As
always, we recommend you study the correspond-
ing sections of PCL’s reference documentation.

As we have said, MetaParameter is the
root of a subtree of descendant classes that
represent all process parameters supported by
PixInsight. Let’s review all of these classes briefly.

MetaBoolean
Represents a Boolean process parameter. The core
expects to read and write to an int32 variable
whose value will be 0 for false and 1 for true. Don’t
use the bool C++ type to implement Boolean
process parameters. Always use the pcl_bool first-
class type, defined in pcl/MetaParameter.h.

Introduction to PixInsight Module Development

4501/2011

Listing 6 — SandboxInstance.cpp (1/3)

46 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 6 — SandboxInstance.cpp (2/3)

4701/2011

Listing 6 — SandboxInstance.cpp (3/3)

MetaEnumeration
Represents an enumerated process parameter. An
enumerated process parameter defines a finite set
of unique-identifier/value associations. The im-
plementation of an enumerated parameter must
be a 32-bit signed integer variable (int32). The
best and safest way to implement enumerated
parameters is by using the pcl_enum type,
defined in pcl/MetaParameter.h.

MetaEnumeration declares the ElementId
and ElementValue pure virtual member
functions, which return the unique enumeration
identifier and value, respectively, for a given
enumeration element.

MetaNumeric
This class is the root of a subtree of classes
representing all numerical parameter types sup-
ported. MetaNumeric has two direct descendants:
MetaInteger and MetaReal, respectively to
represent integer and real (floating point) process
parameters. In turn, MetaInteger roots the
MetaSignedInteger and MetaUnsignedInteger
subtrees. In summary, the following leaf classes —
that is, classes directly usable to derive actual
process parameters— are available: MetaDouble,
MetaFloat, MetaInt8, MetaInt16, MetaInt32,
MetaInt64, MetaUInt8, MetaUInt16, MetaUInt32,
and MetaUInt64.

MetaVariableLengthParameter
This is the root class of a subtree representing
process parameters that implement variable-length
—that is, dynamic— collections of elements.
There are two read-only properties to control the
valid range of lengths for one of these parameters,
accessible through the MinLength and MaxLength
virtual functions. By default, both of these
functions return zero, meaning that there’s no
specific length limit. Variable-length parameters
can be character strings, tables and blocks. Let’s
describe them briefly in the following sections.

MetaString
Represents an UTF-16 string —or more formally,
a Unicode string encoded as UTF-16. The core
expects to find a contiguous list of valid Unicode
16-bit code points as the implementation of a
string process parameter. Surrogate pairs (in the
rare event that a 32-bit code point is necessary) are
fully supported. Two consecutive zero terminating
bytes are advisable but not necessary; the core
always asks a process instance to provide the
current length (in characters) of a string parameter.

MetaBlock
Represents a block process parameter. A block is a
generic container that can be used to store
virtually anything as the value of a process param-

48 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 7 — SandboxParameters.h (1/2)

4901/2011

Listing 7 — SandboxParameters.h (2/2)

eter. A block parameter is usually implemented as
a ByteArray object, which is the Array<uint8>
template instantiation in PCL. The core expects
to find a contiguous sequence of bytes of the
length specified by the parent instance —we’ll see
later how parameter lengths are provided by
process instances.

MetaTable
A table parameter is a collection of rows, where
each row consists of a list of process parameters,
or column parameters. If you take a look at the
documentation for MetaParameter, you’ll notice
that this class —as well as all derived classes
except MetaTable— has two constructors: one
that takes a MetaProcess* argument, and
another one that takes a MetaTable* argument.
The second constructor tells us that any process
parameter class can be used to define a table
column, with just one exception: MetaTable. The
existence of this exception means that you cannot

use a table parameter as a table column parame-
ter: nested tables are not supported. With only
this limitation, MetaTable allows you to define
really complex process instance layouts.

Note that unlike the rest of process param-
eter types, the core will never try to access a table
parameter. This is because a table is only a
structural component of a process instance; its
contents are represented by instantiations of its
columns, which the core will read and write as it
does with regular (non-column) parameters.

Sandbox Parameters
The Sandbox process defines five process param-
eters. The corresponding classes and definitions
are on Listing 7 and Listing 8. These five
parameters have been implemented just as
«placeholders» to illustrate several parameter
types and their typical implementations in a
module. Their identifiers are “sampleOne”,

50 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 8 — SandboxParameters.cpp (1/3)

5101/2011

Listing 8 — SandboxParameters.cpp (2/3)

52 PixInsightMagazine

Introduction to PixInsight Module Development

Listing 8 — SandboxParameters.cpp (3/3)

“sampleTwo”, ..., “sampleFive”. In PixInsight, it
is customary to define process parameter iden-
tifiers following the mixed case Java naming
convention: concatenated words, where all words
begin with a capital letter except the first one.
Unless you have a strong reason to use different
criteria, please define your parameters in this
way for the sake of coherence.

In SandboxInstance.h (Listing 5), from lines
29 to 33, you can see the actual implementations of
the five process parameters as data members of the
SandboxInstance class. These members define
the data that the core will read and write directly
for each instance of the Sandbox process. Note
how the types of these data members are coherent
with the types declared by their MetaProcess
descendant counterparts: float for MetaFloat,
int32 for MetaInt32 , pcl_bool for
MetaBoolean, pcl_enum for MetaEnumeration,
and String for MetaString, respectively. Always
use data types for which the bit and storage sizes
are unambiguously known in a platform-
independent way; for example, using the int and
long C++ types, or even —heaven forbid—
platform-dependent things such as LONG or WORD,
is wrong. Use int8, int16, int32, int64, or the
appropriate size-enforcing types, and implement
your parameters with the corresponding
MetaParameter descendants.

In SandboxInstance.cpp (Listing 6), line 112, we
have a parameter locking routine. This routine is
the LockParameter member function reimple-
mentation of the SandboxInstance class. As you
see, this function has two parameters: a pointer to
MetaParameter and an integer row index. When
the core calls this function for a particular process
instance, the first function argument identifies a
process parameter and the second argument, in
case the parameter is a table column, identifies
the row index ≥ 0 in the parameter’s parent table
parameter.

The core expects that the locking routine
will return the address of a contiguous region of
memory where a data item of the appropriate type
and length, according to the corresponding
MetaParameter description, can safely be
accessed for read and write operations. If the
LockParameter function returns zero, the core
interprets that as an error condition and aborts
the ongoing operation.

In line 127 of SandboxInstance.cpp, you can
see the parameter allocation routine, implemented as
the AllocateParameter member function of
SandboxInstance. The allocation routine is
invoked by the core when a new instance of a
variable-length parameter must be generated.
Allocation is thus only necessary for parameters
declared as MetaString, MetaBlock and

5301/2011

MetaTable descendants. In the case of Sandbox,
only ‘sampleFive’ (MetaString) requires explicit
allocation. The AllocateParameter function has
three parameters. The first one is the requested
allocation length; the other two are for parameter
identification and table row indexing, as before.
Note that the term length here refers to a count of
elements: characters (not bytes!) for strings, bytes
for blocks and rows for tables.

The last parameter management routine is
in line 141 of SandboxInstance.cpp (Listing 6):
ParameterLength(). This function is called by
the core to learn the length of a variable-length
parameter for a particular process instance. The
meaning of «length» is the same that we have
described above for parameter allocation: length
refers to elements, which are bytes only for
MetaBlock parameters.

Instance Execution
Now that we know how a process instance is
defined in terms of its properties —parameters—,
it’s time to learn about its behavior. Unless a
process is an observer tool, it must be able to be
executed. This introduces the concept of execution
context in PixInsight. There are two main execu-
tion contexts: the view context and the global
context. The view context refers to a process
instance being executed on a target image pertain-
ing to a view owned by an image window. This is
the context where most processes normally work.
For example, standard processes such as
HistogramTransformation, UnsharpMask and
DynamicCrop can only be applied to images.

The global context refers to a process that
is executed without a target image. Global proces-
ses are less frequent but not less important. The
palmary example of a global process is Prefer-
ences, which can be used to modify a large set of
global variables (or settings) that change the
behavior of the whole PixInsight platform.
Another, perhaps less obvious example of global
process is NewImage. This process is executed
globally to create a new image window. Although
it certainly works on images, it cannot be ex-
ecuted on an existing image, so its working
context is always global.

There are other processes that are able to
work in both contexts. For example, the
RGBWorkingSpace process can be executed on a
view, to define the image’s private RGBWS, or

globally to define the default RGBWS in the
PixInsight platform. A perhaps less known
example of process that can work in both contexts
is PixelMath. This process has a ‘destination’
parameter that selects whether the result will
replace an existing target image, or if it will be
sent to a newly created image window. In the
second case PixelMath works as a global process.

The view execution routine is a reimple-
mentation of ProcessImplementation::-
ExecuteOn(). SandboxInstance.h (Listing 5)
declares it in line 20. Note that this function
receives a reference to a View object as its unique
argument, which is the target view where the
instance is being executed. Before calling
ExecuteOn() though, the core will always
request permission by calling CanExecuteOn(),
which should either return true to allow view
execution, or false to prevent it. In the latter
case, CanExecuteOn() must also tell why it
doesn’t allow execution on the specified target
view, by providing a human-readable —and
hopefully not too long— description of the
reasons as the value of its whyNot argument.

The definition of ExecuteOn() for the
SandboxInstance class, which you can see in line
66 of SandboxInstance.cpp (Listing 6), provides an
example of how a process implements a sample type
independent image processing routine in PixInsight.
Note in line 72 how the view’s image can be
accessed through an ImageVariant object.
ImageVariant acts much like a C union for all
image types supported in PixInsight. Between
lines 80 and 98, a decision tree is used to solve the
ImageVariant abstraction through template
instantiations covering all image types for which
the process can work (in this case, all types except
complex images). The actual processing tasks are
implemented by a private template class, which we
customarily call an engine class in PCL. These
template-based techniques play an essential role in
PixInsight; they are the foundations of PixInsight’s
transparent support for seven pixel data types: 8-
bit, 16-bit and 32-bit integers, plus 32-bit and 64-
bit real and complex floating point images. Now
you know why PCL makes extensive use of
complex C++ templates, which you should be
prepared to deal with if you are going to develop
on the PixInsight/PCL platform.

For simplicity, we haven’t included global
execution capabilities in SandboxInstance. This
article is just a general introduction; we strongly

54 PixInsightMagazine

recommend that you study the corresponding
sections of PCL’s reference documentation, as
well as the numerous open-source modules that
come with PCL distributions.

Process Interfaces
As I have said earlier, process interfaces are quite
complex and cannot be covered properly in a
general introductory article; we’ll cover this
subject in future development documents. For
this reason we’ll limit ourselves and won’t include
the source code for the SandboxInterface.h and
SandboxInterface.cpp files in this article. You
already have these files in all PCL distributions,
and there are also many examples among the
open-source standard modules that you can use to
begin exploring PCL graphical interfaces. Along
with all of that practical material, the PCL
Reference Documentation is quite complete for
the ProcessInterface class, which is the
abstract base class for all PCL process interfaces.

Building Modules:
The Makefile Generator Script

Makefile Generator is part of the standard set of
scripts distributed with the PixInsight Core appli-
cation. This JavaScript script is a PCL develop-
ment utility for automatic generation of makefiles
and project files on all supported platforms:
FreeBSD, Linux, Mac OS X and Windows,
including 32-bit and 64-bit builds. You can see a
screenshot of the script’s main dialog on Figure 5.
Makefile Generator is rather easy to use. The
script expects all the source code for your module
located under a single directory; this is customary
practice in PixInsight/PCL development. You
just select the module’s source directory as the
project directory, and leave the rest of script
parameters with default values. The module
name —the name of the module’s shared
object— is the name of the project directory
unless you specify a different project identifier.

Figure 5— The Makefile Generator script.

Introduction to PixInsight Module Development

5501/2011

You can also specify a platform and an architec-
ture, although you normally will leave the All
Platforms and All Architectures check boxes with
their default checked state. This will generate
makefiles for all supported platforms and x86 and
x86_64 architectures. Makefile Generator allows
you to create makefiles and project files for
several types of projects: modules, static libraries,
dynamic libraries and standalone executables.
There are other project types but they are for
internal PTeam use exclusively.

Makefile Generator automatically selects
all the necessary libraries and shared objects for
all platforms and architectures, including all
standard PCL libraries, so you normally don’t
need to change further script parameters. In case
your project has specific requirements for custom
include files and directories, additional libraries
or preprocessor directives, you can specify them
with the corresponding parameters, as you can
see on Figure 5. There are other options for
debug builds, custom optimizations and auto-
matic PCL diagnostics code generation; these are
well explained by tool tips on the script’s dialog.

Note that Makefile Generator is an
instantiable script. You know this from the blue
triangle icon at the bottom left corner of the
script’s dialog. An instantiable script allows you
to generate Script process icons by dragging the
blue icon to the workspace, so you can save your
settings for later use, and store them as standard
XPSM files. This is particularly useful when you
have custom settings such as preprocessor
directives and special directories and libraries.

When you execute Makefile Generator, it
creates a number of directories under your
project’s root directory, one for each platform:
freebsd, linux, macosx and windows. Each of these
directories is populated with the necessary
makefiles and project files to build the module on
each platform and architecture. For UNIX
(FreeBSD, Mac OS X) and Linux platforms,
standard GNU makefiles are generated. For
example, in the Linux case the script will gener-
ate the following makefiles:

<module-dir>/linux/Makefile
<module-dir>/linux/makefile-x86
<module-dir>/linux/makefile-x86_64

So you just have to go to the linux subdirectory
and enter the ‘make’ command to build your
module on Linux, both 32-bit and 64-bit versions

Figure 6— Makefiles for the Sandbox module.

56 PixInsightMagazine

—note that we are assuming that you work on a 64-bit machine and operating system, as that
is a necessary condition to build modules for 64-bit architectures. In case you just want to
build the 64-bit version, for example, you should enter the following command:

$ make -f makefile-x86_64

Note that on FreeBSD you must use gmake instead of make to run the GNU make utility.
On Figure 6 you can see the set of makefiles and project files that the Makefile

Generator script generates for the Sandbox module.

Inspecting Processes: The Property Browser
The Property Browser is a graphical inspection tool integrated with the Process Explorer
window in the PixInsight Core application. It allows you to inspect a process and all of its
properties, including process parameters. This can be very useful as a debug and analysis tool
because it allows you to verify the actual state of a process as it is being seen by the core.

To work with the Property Browser, open the Process Explorer window and extend
its right panel (by default, the right panel is hidden) by clicking the double arrow button at
the bottom. Then select the Property Browser by clicking the corresponding button, also at
the bottom of the Process Explorer’s right panel (by default, the Documentation Browser is
selected instead). Once you have the Property Browser visible, select any process on the
Process Explorer’s left panel to inspect it. You have an example on Figure 8.

The Documentation Compiler Script
Last but not least, you should write documentation for all the processes and tools that you
create. The PixInsight Reference Documentation System allows you to integrate your own
documentation with the PixInsight Core application. For this purpose, you must write all
your documentation in the PIDoc document definition language, then compile it with the
Documentation Compiler script (Figure 7) to generate an XHTML document. For more
information on PIDoc and the PixInsight Reference Documentation System, please refer to
the following document: http://pixinsight.com/doc/docs/PIDocReference/PIDocReference.html

Introduction to PixInsight Module Development

Figure 7— The Documentation
Compiler script.

5701/2011

Juan Conejero is the author
and principal developer of the
PixInsight image processing
application and the PixInsight
Class Library (PCL). He is the
co-founder and CEO of
Pleiades Astrophoto, the
Spanish software development
company that produces
PixInsight.

Figure 8— The Property Browser.

58 PixInsightMagazine

5901/2011

A ll the biological background of the project
aside, what I do as an engineer is to analyze
two set of images, showing the calcium

concentration in a rat tissue sample, where a
calcium wave propagates from a mechanically
stimulated cell. Since they are using a fluores-
cence marker, the calcium concentration is
calculated from the ratio of images at each of
these sets, acquired at different wavelengths. The
raw data is stored as 8-bit TIFF files and
acquired with a CCD camera —yes, pretty much
the same as in astrophotography. The goal was to
design and implement a software that reads the
raw data, calibrates it, and then extracts certain
parameters to characterize the wave propagation,
such as amplitude, speed, decay rate, etc.

My decision was to implement all of these
as a new PixInsight module that contains several
processes to address each stage of the analysis
work. An alternative could be using a standard in
the image processing field: MATLAB®. But, since
it uses an interpreted language, which is slower,

and I wanted something more user friendly and
almost standalone, I discarded that option.
PixInsight modules run native C++ code, which is
pretty fast. Also, the PCL has been highly op-
timized and parallelized, so as long as I use
already implemented functions, there is no much
need for additional care on code optimization.

But writing a new module may be a time-
consuming task. Testing new procedures or
algorithms may take a while, and we may end
wasting a lot of time just to get it working.
Fortunately, PixInsight offers an alternative to
modules: the PixInsight JavaScript Runtime
(PJSR). I had almost no experience with PJSR
and the JavaScript language. Luckily, it is an
object-oriented language like C++ and its syntax
is very similar to C, so even if I don't know
exactly how it works, for me it is readable. There
are also many examples that can be adapted to
our own needs. Gathering pieces from here and
there, using an existing script as a basis, I was able
to quickly implement my algorithm and test its

PixInsight as a Research Platform
Carlos Milovic

Since the beginning, the PixInsight project was aimed to be much more than a field-specific
processing package. Many times we have referred to it as an image processing platform, and
that’s quite true. Despite the fact that many processes had indeed been developed with
astrophotography in mind, most of them are general-purpose algorithms applicable to almost
any imaging field. In addition, PixInsight's object oriented architecture allows developers and
researchers to integrate the modules with scripts, or to create their own specific modules thanks
to the PixInsight Class Library. Both facts allow PixInsight to become an invaluable research
tool. In this brief article, I'm going to share my experiences using it at my daily research job at
the Biomedical Imaging Center of the Pontificia Universidad Católica de Chile.

60 PixInsightMagazine

Previous page: A rat tissue sample. After
calibration and correction for marker decay,
the basal conditions are calculated.

On this page, top: At a certain time, a
single cell is mechanically stimulated, and
calcium is released to the media.

Middle: The calcium wave propagates, as
other cells release their own stores.

Bottom: Eventually, the wave stops, and
the cells reabsorb or expel the calcium slowly.

PixInsight as a Research Platform

6101/2011

results. Of course, it was slower than native C++
code, but it gave me a very nice idea of what
happened, and allowed me to adjust the code for
optimal results. Another benefit of the JavaScript
engine is that one may interact with already
installed modules. Creating and testing a mor-
phological filter, for example, is easier in PJSR
than in C++/PCL code.

Another advantage is that the JavaScript
engine is pretty much a clone of PCL, in the sense
that it uses almost the same class definitions and
functions, so porting JavaScript code into C++
doesn't require to rewrite everything again.

There are many JavaScript source code
examples, and the same happens with modules and
processes. This is an invaluable source of know-

ledge, and using an existing module as a starting
point will save large amounts of time. With the
time, you'll gather a library of code with your own
solutions to specific problems, and writing each
new module will be easier and easier.

Also, just like in any C++ code, you may
use external libraries to help you. For instance, to
solve nonlinear least square function fitting
problems I used the CMinPack library. Eve-
rything works smoothly and is cross-platform, so
my biologist partners use my module compiled
on Windows, even if I write and test the code on
Fedora Linux.

So, from a developer's point of view,
PixInsight is really a very powerful platform that
may host every one of our research projects.

Top row, middle: Since the wave propagation
follows a radial propagation, integration of
concentric one-pixel width rings around stimulus
simplify the analysis, giving a graph of the radial
progress over time of the concentration (vertical
axis is time, horizontal is radius size).

Top row, right: Studying the gradient of
this graph allows us to follow the wavefront.
The slope of a linear fit to the trajectory gives
the velocity of the wave.

Left column: With the aid of the 3DPlot
script, a better visualization of the graph allows
for a deeper understanding of the data. See how
the calcium in the inner regions decay at a
slower rate, and there is still a remnant at the
end of the experiment.

62 PixInsightMagazine

PixInsight as a Research Platform

Top: Nonlinear modeling of decay
functions gives more input of the wave
behavior. Here is the fitted wave amplitude.

Middle: The model predicts the time of
activation (darker means earlier). The cells
activate almost as blocks, very fast, following
a radial pattern from the stimulus.

Bottom: Finally, the decay rate is
revealed to be much greater on the
stimulated cell and its neighbors.

6301/2011

As I said earlier, PCL simplifies many tasks quite
a lot. And not only from the performance point
of view. Many algorithms like convolutions,
morphological filters, wavelet transforms and
many more, are already implemented as PCL
classes. Using them with our modules is transpar-
ent and straightforward. The extensive use of
templates also helps to manage any type of
image, including any bit depth, or even complex
floating point images.

From the user’s point of view, once you
understand PixInsight's GUI paradigm —as has
been said somewhere else, if you aren't too
accustomed to other software packages, under-
standing PixInsight's GUI is quite easy— the use
of the modules is very intuitive, and may give the
user a lot of control over the processes.
PixInsight's console provides a wealth of in-
formation, and it may be quite useful to super-
vise the progress and to read results. On the
other hand, the capability to manage 32 and 64-
bit floating point images prevents any inter-
mediate discretization problems, so the user can
see the whole process from a more analytic point
of view. Furthermore, even with a module that
solves the user's specific needs, he/she may also
use the standard modules and scripts to go even
beyond, like 3D plotting for better representa-
tion of data, or use the ScreenTransferFunction
process to inspect images. The Statistics and
HistogramTransformation processes are also
invaluable. Since PixInsight has been designed
for image processing, management of this kind
of data is much more pleasant than in other
scientific packages.

PixInsight has a lot of potential to become a
standard tool in research. Not only in professional
astronomy, but in any other field that makes
extensive use of image processing, such as biomedi-
cal imaging, forensics, industrial control, etc.

Carlos Milovic works as a
research engineer at the
Biomedical Imaging Center of
the Pontificia Universidad Católica
of Chile. He is an active PTeam
member and PixInsight
developer who has contributed
numerous tools, including the
AutomaticBackgroundExtractor
process for automatic sky
gradient modeling and
correction.

64 PixInsightMagazine

The PixInsight Community has been very active lately, and PixInsight Forum's
statistics confirm that. At the beginning of March 2010 we reached 10,000 posts. Right
now we have over 18,000 forum messages, with a consistent average of more than 700
new messages per month. The highest peak of activity was reached during September

2010, when we got over 1300 new messages. Keep them coming! Forum membership is
also growing at a steady rate. Right now we have over 650 registered members. Thanks

for joining the cause, and welcome aboard! But these numbers don't quite reflect the
extraordinary contributions to the project that our users have been making. Let's

review some highlights from the past months.

6501/2011

Harry Page has become one of our
most active contributors with his great
series of PixInsight video tutorials.
Watching his newbie and
medium/advanced videos is a must
for all PixInsight users:
http://harrysastroshed/pixinsighthome.html

Ken Hudson interviewed Juan
Conejero and Harry Page on Share
Astronomy:
http://www.shareastronomy.com/blog_posts/45
http://www.shareastronomy.com/blog_posts/46

Jordi Gallego has contributed with
tutorials and presentations:
http://jordigallego.fotografiaastronomica.com/
articles.html

Vicent Peris is co-author of a Letter
to the Editor on Astronomy &
Astrophysics, published May 11,
2010: Herschel images of
NGC6720: H2 formation of dust
grains, by P.A.M. van Hoof et al. In
this article Vicent has used PixInsight
to carry out all the reduction of the H2
infrared data acquired with the 3.5
meter telescope of Calar Alto
Observatory. These data were used in
combination with images acquired
through the Herschel infrared spatial
telescope.

Niall Saunders started a forum
thread that led to a very nice
compilation of PixelMath hints are
tricks, implementing different
blending methods:
http://pixinsight.com/forum/index.php?
topic=2409.0
Niall is also the author of a new video
tutorial on the StarGenerator tool:
http://pixinsight.com/forum/index.php?
topic=2192.0

Rowland Cheshire compiled a very
nice tutorial on DSLR image
calibration, gathering different
sources of information on the forum:
http://pixinsight.com/forum/index.php?
topic=2570.0

Enzo de Bernardini published a
DSLR tutorial in Spanish on his
homepage:
http://astrosurf.com/astronosur/
pixinsight/preprocessing-1.htm

Rogelio Bernal made a significant
collaboration just before the PixInsight
1.6 release: The Unofficial PixInsight
Reference Guide. This document goes
through all standard tools included in
PixInsight Core distributions,
providing a brief description of its
purpose and some details on
parameters and interface options:
http://blog.deepskycolors.com/PixInsight/

In Rogelio's homepage you'll find also
some PixInsight tutorials, like this
brand new article about HDR
composition:
http://blog.deepskycolors.com/archive/
2011/01/19/
HDR-Composition-with-PixInsight.html

Rogelio was also a speaker at the
Advanced Imaging Conference (AIC)
2010, held on October 22-24 in Santa
Clara, California. During his talk,
Rogelio described some of his
processing techniques with PixInsight.
This year he won AIC's Pleiades Award.

Sander Pool gave a lecture on
PixInsight at the Mid-West Advanced
Imaging Conference (MWAIC)2010,
held on July 23-24, in Chicago. He
has also published a series of articles
about PixInsight on the AstroPhoto
Insight Magazine. Sander is a
PixInsight/PCL developer; his Debayer
module has been included in the
latest releases as an official module,
and there is a new process called
DynamicProfile that provides a nice
plot of the intensity of pixels along a
line and works as a dynamic tool.
This process is on the final stages of
development. More details about that
in our development news section.

Yuriy Toropin announced a new
imaging project on May 2010: Ultra
Deep M51. The goal of this project is
to gather image sets from several
amateur astronomers, to achieve the
deepest amateur picture of this field
ever. A preliminary result was
published on June. See here for the
announcement and the images:
http://pixinsight.com/forum/index.php?
topic=1878.0
http://pixinsight.com/forum/index.php?
topic=1988.0

6501/2011

66 PixInsightMagazine

PixInsight Workshop by Vicent Peris
Adler Planetarium, Chicago, USA,
September 10–12 2010

From left to right:
Geoffrey Stone, Cleon Wells, Larry Van Vleet,

David Illig, Vicent Peris, Joe De Pasquale, Philip
de Louraille, Robert Hurt and Max Mirot.

More information on this workshop on our website:
http://pixinsight.com/workshops/adler-2010/
and also on this thread of PixInsight Forum:
http://pixinsight.com/forum/index.php?topic=2333.0

Community News

6701/2011

Carlos Milovic gave three talks on the first
Austral Astrophotographic Conference: an

introduction to PixInsight, a talk about HDR
techniques, and a beginner's introduction

to histograms.

Congreso Austral de Astrofotografía
ESO Facilities, Santiago, Chile,
November 26-27

Some of Carlos’ presentations are available
on the official webpage of the event, along
with more pictures:
http://www.astrofotografos.cl/

6701/2011

Ph
ot

os
 c

ou
rte

sy
 o

f L
eo

na
rd

o
Ju

lio

NEWSCRIPTS

Community News

CanonBandingReduction by Georg Viehoever
http://pixinsight.com/forum/index.php?topic=1159.0
This script allows the user to correct a banding pattern
that is generated by Canon's CMOS sensors.

BatchDebayer by Ken Pendlebury
http://pixinsight.com/forum/index.php?topic=1731.0
This script allows the user to select a large set of images
to apply a deBayer process as a batch procedure.

Updated MaskedStretchTransform by Andrés Pozo
http://pixinsight.com/forum/index.php?topic=1737.0
Andrés modified David Serrano's original script,
increasing the performance of the algorithm. The
modified version runs significantly faster, and even if it
lacks some accuracy with respect to the original, the
results are close enough for a highly beneficial trade-off.

SubstituteWithPreview by Juan M. Gómez
http://pixinsight.com/forum/index.php?topic=1747.0
This is a nice tool to replace the pixel contents of an
image with the contents of a preview generated on
another image. Very useful to build better star masks.

LensCorrection by Juan M. Gómez
http://pixinsight.com/forum/index.php?topic=1794.0
Still under development, this script implements
geometrical corrections for pincushion and barrel
deformations. This script will be useful to fix the
distortions generated by optical systems, especially wide
angle lenses.

NarrowbandCombination by Juan M. Gómez
http://pixinsight.com/forum/index.php?topic=1714.0
Another script still under development. This script has
shown promising results combining data from
narrowband filters and monochrome cameras.

BackgroundEnhance by Juan M. Gómez
http://pixinsight.com/forum/index.php?topic=1921.0
A simple way to deal with background enhancement.
Nice interface and intuitive controls.

CosmeticCorrection by Nikolay Volkov
http://pixinsight.com/forum/index.php?topic=1828.0
This script uses a dark frame as a defect map to fix hot
and cold pixels. A great companion to the
ImageCalibration process.

68 PixInsightMagazine

StarHaloReducer by Juan M. Gómez
http://pixinsight.com/forum/index.php?topic=1427.0
A very useful tool to reduce the halos generated by
bright stars. Manual selection is required, but the script
automates most of the process.

MergeMosaic by Georg Viehoever
http://pixinsight.com/forum/index.php?topic=2124.0
For Windows only, this script uses a Poisson solver to
merge mosaic images in the gradient domain, yielding
seamless results. Needs the solver installation to work.

StarTrailsBlending by Enzo De Bernardini
http://pixinsight.com/forum/index.php?topic=2122.0
Enzo's first script automates the creation of long star
trails from a series of short exposures. Not only saves the
final result, but also intermediate steps, allowing new
forms of animations to be done.

PropagatePreviews by Enzo De Bernardini
http://pixinsight.com/forum/index.php?topic=2190.0
Simple tool to transport previews to several images.

Animation by Nikolay Volkov
http://pixinsight.com/forum/index.php?topic=1895.150
A script that animates several files, enabling a fast way to
perform blinking between images. Latest update (2.9.1)
is avalaible from the forum, following the link above.
Here’s a movie where this script is the protagonist:
http://pixinsight.com/videos/blink-script/blink-the-movie-1.mov

LotsOfConvolution by Christoph Puetz
http://pixinsight.com/forum/index.php?topic=2261.0
33 common convolution matrices, compiled by
Christoph. Low-pass, high-pass, edge detectors and
many other useful filters.

BatchChannelExtraction by John Brown
http://pixinsight.com/forum/index.php?topic=2476.0
Extracts user selected channels from RGB images, and
writes them as new grayscale images.

CalculateSkyLimitedExposure by Sean Houghton
http://pixinsight.com/forum/index.php?topic=2584.0
With the CCD users in mind, Sean wrote this script to
inspect raw data images and help you in the calculation
of the sky limited exposure for a given site.

6901/2011

Community News

NEWMODULES

Debayer by Sander Pool
Many times a manual deBayer procedure is
needed, and this is the tool of choice for this task.
The latest version is included as an official module
with PixInsight Core distributions.

DynamicProfile by Sander Pool
http://pixinsight.com/forum/index.php?topic=2247.0
Still under development, this is a dynamic
process that reads pixel values along a user
defined line across the image, and plots the
intensities on its interface. A very useful tool for
visual inspection of image changes. No beta
releases are available right now.

AssistedColorCalibration & Annotation
by Zbynek Vrastil
http://pixinsight.com/forum/index.php?topic=2577.0
Two very useful modules with excellent
implementation and design. The first one allows
to perform a manual color calibration (white
balance) with previewing capabilities. The
Annotation module is an interactive text rendering
tool. It renders a single line of text on an image,
with user-selectable font, font style, color, shadow,
opacity and leader line.

ImageAcquisition by David Raphael
http://pixinsight.com/forum/index.php?topic=2681.0
This is an exciting and promising new
development project. David is working on a
camera control and image acquisition module.
This project is still in its early development stages.

70 PixInsightMagazine

CMSegmentation Module – A collection of
processes related to mask creation, object
detection or feature extraction.
• CHT: CHT stands for Circular Hough Transform.
This algorithm transforms the image into a
parametric space, where the intensity of the pixels
is a measure of the probability of having a circle
centered at that position. Transforms for different
radii are calculated into different alpha channels.
• ColorRange: This process creates a new binary
image that reflects the selection of a cube or
spherical selection around a user-defined "color".
This selection may be defined in various color
spaces, providing a lot of freedom and flexibility.
• LHT: LHT stands for Linear Hough Transform.
This algorithm transforms the image into a
parametric space, where the intensity of each pixel
is a measure of the probability of having a straight
line at the pixel's location. The X axis gives the
inclination angle, and the Y axis the absolute
minimal distance from the origin.
• ReadPSF: Very simple implementation of the
StarStatistics class, to evaluate the PSF by fitting
Gaussian functions to star shapes.
• Seed: More commonly known as "Magic Wand".
This algorithm plants a seed and through local
and global comparisons, determines a similar
neighborhood.

Development Modules by Carlos Milovic
http://pixinsight.com/forum/index.php?topic=2275.0
Since they are still not included in the standard set
of processes, I'll briefly describe several tools that
are avalaible for download for 32-bit and 64-bit
Windows and 64-bit Linux.

CMConv Module. A collection of convolution
processes.
• Blur: Very simple implementation of "average
type" low-pass filters.
• GaussianBlur: Blurring with a user-defined
Gaussian function. User-defined standard
deviation, kurtosis, asymmetry, and rotation angle.
• GradientMapper: This process calculates the
gradient of an image (with user-defined filters)
and creates a new image with the gradient
modulus. Gradient angle output is optional.
• Sharpen: Simple implementation of Laplacian
high-pass filters. Does a good job with small-scale
contrast enhancement.

CMGeneral Module. A collection of general-
purpose processes, mainly for preprocessing tasks.
• FFTRegister: This is an implementation of the
FFTRegistration script by Juan Conejero, with a
wavelet-based optimization. In some cases,
isolating a single wavelet layer generates better
results, especially when noise is prominent at high
frequencies.
• SelectiveBlend: Compose a color image from
grayscale channel images with user-defined
percentages. Useful to blend narrowband images.

CMIntensity Module – A collection of intensity
transformations.
• GammaStretch: A simple gamma stretch, with
real-time preview.
• HistogramEqualization: The goal of this process is
to compute a transformation function that yields a
flat histogram. This means that pixel values will be
distributed equally throughout the available numeric
range. Fast and simple algorithm that works well
with many daytime pictures. Future development will
include histogram specification, that will allow for
better results in other applications.
• QuickSTF: Instead of changing the STF by black
and white points and a midtones balance, this
process defines brightness and contrast
parameters. An interactive mode lets the user to
change the STF by clicking on the image, and the
pixel coordinates will modify the SFT parameters.

7101/2011

72 PixInsightMagazine

Ju
p

it
er

 b
y

M
áx

im
o

Ru
iz

 |
 2

01
0/

09
/1

9
-

02
:3

0
U

T
|

M
ea

de
 L

X
20

0
10

" A
C

F
|

Im
ag

in
g

So
ur

ce
 D

M
K

21
A

7301/2011IMAGEGALLERY

74 PixInsightMagazine V
a

n
 d

en
 B

er
g

h
 1

5
2

 b
y

Jo
rd

i G
al

le
go

 |
 T

ot
al

 e
xp

os
ur

e
tim

e:
 1

3.
25

 h
 (L

RG
B)

 |
 T

ak
ah

as
hi

 T
O

A
 1

50
 |

 S
BI

G
 S

TL
-1

10
00

M

7501/2011 N
G

C
 1

3
3

3
 b

y
Jo

rd
i G

al
le

go
 |

 T
ot

al
 e

xp
os

ur
e

tim
e:

 2
0

h
(L

RG
B)

 |
 T

ak
ah

as
hi

 T
O

A
 1

50
 |

 S
BI

G
 S

TL
-1

10
00

M

76 PixInsightMagazine

7701/2011

Van den Bergh 141 by Jordi Gallego
Total exposure time: 12.75 h (LRGB)
Takahashi TOA 150 | SBIG STL-11000M

NGC 6951 by Stephen Leshin
Total exposure time: 18.7 h (LRGB)

RCOS 14.5” f/9 | SBIG STL-11000XM

78 PixInsightMagazine

7901/2011

NGC 660 by Stephen Leshin
Total exposure time: 15 h (LRGB)
RCOS 14.5” f/9 | SBIG STL-11000XM

NGC 772 by Stephen Leshin
Total exposure time: 16.67 h (LRGB)

RCOS 14.5” f/9 | SBIG STL-11000XM

80 PixInsightMagazine

Messier 51 — RGB by Vicent Peris (OAUV), Jack Harvey (SSRO), Steven Mazlin (SSRO),
Juan Conejero (PixInsight) and Carlos Sonnenstein (Valkanik); CAHA, Descubre Foundation, OAUV, DSA.
Total exposure time: 24 h (RGB) | Zeiss 1.23 m f/8 | SITe 2Kx2K, 24 um pixel CCD sensor

8101/2011

Messier 51 — HaRGB by Vicent Peris (OAUV), Jack Harvey (SSRO), Steven Mazlin (SSRO),
Juan Conejero (PixInsight) and Carlos Sonnenstein (Valkanik); CAHA, Descubre Foundation, OAUV, DSA.
Total exposure time: 35 h (HaRGB) | Zeiss 1.23 m f/8 | SITe 2Kx2K, 24 um pixel CCD sensor

82 PixInsightMagazine

Small Magellanic Cloud by Stanislav Volskiy
Total exposure time: 73 h (HaLRGB, 6 panel mosaic) | FSQ 106ED | SBIG STL-11000XM

Zoomed crop at right

8301/2011

84 PixInsightMagazine

Messier 31 by Jon Talbot
Continuum subtracted, narrowband H-alpha image

Total exposure time: 16 h (H-alpha & red cont.)
Stellarvue SV80ST2 | QSI 583

8501/2011

IC 1805 by Máximo Ruiz
Total exposure time: 15 h (HaRGB)

Takahashi FSQ 85ED | Cooled Canon 50D

86 PixInsightMagazine

Orion’s Belt by Sergi Verdugo
Total exposure time: 6.67 h (RGB, two panel mosaic)

William Optics Megrez 88FD with flattener/reducer Borg DG-L | Amp-off Modded & Cooled Canon 350D

8701/2011

N
G

C
 6

9
1

4
 b

y
Vi

ce
nt

 P
er

is
 (O

AU
V)

, J
ac

k
H

ar
ve

y
(S

SR
O

),
Ju

an
 C

on
ej

er
o

(P
ix

In
si

gh
t);

 C
A

H
A

, D
es

cu
br

e
Fo

un
da

tio
n,

 O
AU

V,
 D

SA
.

To
ta

l e
xp

os
ur

e
tim

e:
 2

3
h

(H
aR

G
B,

 tw
o

pa
ne

l m
os

ai
c)

 |
 Z

ei
ss

 1
.2

3
m

 f/
8

|
SI

Te
 2

Kx
2K

, 2
4

um
 p

ix
el

 C
C

D
 s

en
so

r

88 PixInsightMagazine

	PixInsight Magazine

